Test Examination-2019

Raiganj Surendranath Mahavidyalaya B.Sc Part-III Honours

Subject: CHEMISTRY Paper-IX (Organic)

F.M.-65, Time-3 Hours

	Paper Code : IX-A	
Full Marks: 15		Time: 30 min.

Answer all the questions

Answer an the questions				
1. Choose the right one in the following MCQ question			(15×1)	
(I) Ti(ⁱ OPr) ₄	reagents are used in Sharpless (II) t-BuOOH	(II) (+) DET	(IV) All of these	
(b) Which of the following disachharide is non-reducing in nature				
(I) Lactose	(II) Maltose	(II) Sucrose	(IV) None of them	
(c) Biuret test will be given	•			
(I) Dipeptide	(II) Tripeptide	(II) Tetrapeptide	(IV) None of these	
(d) Pomeranz Fritsch synthesis is used for the preparation of				
(I) Indole	(II) Quinoline	(II) Isoquinoline	(IV) Furan	
(e) Which polymer is formed using adipic acid as a monomer?				
(I) Terylene	(II) Nylon 66	(II) Polystyrene	(IV) Teflon	
(f) Enol contained is least in which of the following compound				
(I) EAA	(II) (Me ₃ CO) ₃ CH	(II) Acetylacetone	(IV) α-phenyl EAA	
(g) How many ¹ H NMR signals are found in 1,2-dichloro cyclohexane and 1,4-dichloro cyclohexane?				
(I) 2,3	(II) 3,2	(II) 3,1	(IV) 2,1	
(h) \mathbf{v}_{co} stretching value is m	nax for which of the following	g compound		
(I) RCH=C=O	(II) RCONH ₂	(II) RCOCl	(IV) RCOOH	
(i) The preferred conformation of <i>cis</i> -1,4-di- <i>tert</i> butyl cyclohexane				
(I) Chair	(II) Half chair	(II) Boat	(IV) Twist boat	
(j) Which of the following pair is not epimer				
	(II) D-glucose & D-galactose	(II) D-arabinose & D- ribose	(IV) α-D-glucose & β-D- glucose	
(k) Cyclic Model and Crams model give same product when OH gr. connected to chiral carbon in a ketone is				
(I) Small gr.	(II) Medium gr.	(III) Large gr.	(IV) None of These	
(l) Malachite green is an example of				
(I) Anthraquinonoid	(II) Azo dye	(II) Triphenylmethane	(IV) Mordant dye	
Dye		dye		
(m) The λ_{max} value will be maximum for				
(I) Cyclohexane	(II) Cyclopropane	(III) Cyclobutane	(IV) Cyclodecane	
(n) Cope rearrangement is s	shown by which of the follow	ing diene	. ,	
(I) 1,4	(II) 1,5	(III) 1,3	(IV) 1,6	
(o) Chose the figure print region in IR Spectroscopy				
(I) 4000-3000 cm ⁻¹	(II) 2000-1500 cm ⁻¹	(III) 1400-900 cm ⁻¹	(IV) 1700-1000 cm ⁻¹	

Paper Code: IX-B

Full Marks: 50 Time: 2.5 hrs

Answer any *five* questions taking *at least two* from each group

Group - A

- 1. (a) Explain the change in nature of ${}^{1}HNMR$ spectrum of $CH_{3}OH$ when experiments are carried out with neat liquid at 30 ${}^{\circ}C$ and at ${}^{-4}S$ ${}^{\circ}C$.
 - (b) Distinguish between the following compounds:

2

- (i) *p*-hydroxybenzaldehyde & salicaldehyde --- using IR (ii) Phenol & *p*-nitrophenol --- using UV (c) Convert: *p*-methoxybenzaldehyde → 6-methoxyisoquinoline
- 2

2

- (d) 1,3,5-hexatriene cyclohexadiene inter-conversion will occur by disrotatory mode under thermal condition --- Explain using Orbital symmetry conservation theory.
- (e) Bromine water oxidation of α -anomer of D-glucopyranose is 250 times slower than the β -anomer --- Explain.
 - 2. (a) How can you carry out the following conversion:

- (b) E, F, G are three aldohexoses. E & F yield sorbitol when they are catalytically hydrogenated but yield different osazones when treated with excess phenylhydrazine. Whereas, F & G give same osazone, but yield different alditols. Assuming that F & G are D-aldohexoses give the structures of E, F, G.
 - (c) Calculate the λ_{max} values :

2

(d) Identify A & B with justification:

3

$$\label{eq:Balling} \textbf{B} \begin{tabular}{ll} \textbf{A} & \textbf{A} \\ \hline \textbf{EtOH} & \textbf{CH}_3\textbf{COCH}_2\textbf{CO}_2\textbf{Et} \\ & \textbf{CH}_3\textbf{COCH}_2\textbf{CI} \\ \hline \end{tabular} \begin{tabular}{ll} \textbf{NaOEt} \\ & \textbf{CH}_3\textbf{COCH}_2\textbf{CI} \\ \hline \end{tabular}$$

- 3. (a) When propane is subjected to free radical chlorination in the ratio C_3H_8 : Cl_2 = 1:2, it gives a mixture of isomeric compounds A,B,C,D. The ¹HNMR of these compounds are given. Deduce the structures of A, B, C, D.
 - Isomers--- **A**: δ 2.4(s, 6H);
- **B**: δ 1.2(t, 3H), 1.9 (quintet, 2H), 5.8 (t, 1H);
- **C**: δ 1.4(*d*, 3H), 3.8(*d*, 2H), 4.3(*m*, 1H);
- **D**: δ 2.2 (quintet, 2H), 3.7 (t, 4H)

(b) Identify A, B, C:

3

3

EtO₂C
$$\longrightarrow$$
 A $\xrightarrow{CO_2Et}$ EtONa A $\xrightarrow{H_3O^+}$ B $\xrightarrow{i)$ N₂H₄ \longrightarrow ii) EtONa

(c) Predict the products with suitable mechanism:

 $2 \times 2 = 4$

(i) Ph
$$+ MeO_2C$$
— $-CO_2Me$? (ii) R CrO_3 ?

- 4. (a) What products can you expect from Killani- Fischer synthesis of D glyceraldehyde? Can you distinguish their configuration by carrying out any simple reaction? 2+1
 - (b) Why is periodic acid, rather than leadtetraacetate, is used for oxidative cleavage of carbohydrate? 1
 - (c) Predict the outcome of the following reaction: 2

$$\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{OH}
\end{array}$$

$$\begin{array}{c}
\text{BF}_3 \\
\text{dry Et}_2\text{O}
\end{array}$$

(d) Predict the structures of A & B:

$$\begin{bmatrix} \textbf{IR}: 1700 \text{ cm}^{-1} \\ \textbf{^1HNMR}: 2.1 \ (s, 6H) \end{bmatrix} \quad \textbf{A} \qquad \qquad \underbrace{ \text{i) NaOH} } \qquad \textbf{B} \qquad \underbrace{ \textbf{IR}: 1620 \text{ cm}^{-1}, 1695 \text{cm}^{-1} } \\ \textbf{(C}_{6}H_{10}O) \qquad \qquad \underbrace{ \text{ii) H}_{3}O^{+} } \qquad \underbrace{ \textbf{(C}_{6}H_{10}O) } \qquad \underbrace{ \textbf{^1HNMR}: 1.9 \ (s, 3H), 2.1 \ (s, 6H), 6.15 \ (s, 1H) }$$

(e) **Convert**: *o*-aminophenol → 8-hydroxyquinoline

Group - B

- 5. (a) What is Sanger reagent? How is it used to determine the *N*-terminal amino acid in peptide molecule? Give necessary reactions with mechanism. 1+2
 - 2+2 (b) How can you synthesize the following compounds:
 - (i) 4-methylpentan-2-one from EAA
 - (ii) 2,3- dimethylbutanoic acid from DEM

2

2

(c) Identify the topic relationship between **H**_A & **H**_B in the following compounds:

 3×1

6. (a) Design the synthesis of crystal violet from phosgene & N,N-dimethylaniline. The colour of crystal violet changes depending upon pH of the solution as follows; Explain this phenomena: 2+2

(c) Designate R/S to the following compounds. What kind of isomerism is this and what kind of chirality is responsible for this kind of isomerism?

MeO
$$CO_2H_{CO_2H}$$
 (ii) O $1+1+1+1$

- 7. (a) Synthesize 3-methylpentan-2-ol starting from EAA.
 - (b) How can you prepare tyrosine specifically labelled with ${}^{14}\mathbf{C}$ at the carbon atom of carboxylic acid? 2

2

2

2+2

(c) Predict the products with justification: 2+2

(i)
$$NH_2$$
 $NaNO_2$ Pr $Ti(^iOPr)_4$, $TBHP$ $TI(^iOPr)_4$, TAP TAP

- (d) Predict the products: 1+1
- (i) Diazotised 3-NH₂-4-OH-benzenesulphonic acid + m-phenylenediamine \longrightarrow ?
 - (ii) Benzenediazoniumchloride + resorcinol → ?
- 8. (a) What is meant by specific base-pairing in a double helix structure of a DNA molecule? Why has other base pairings not observed in a DNA double helix structure? 2+2
 - (b) Predict A & B and provide suitable mechanism in support:

$$MeCH_2CO_2Et + (CO_2Et)_2 \xrightarrow{(i) EtONa} A \xrightarrow{Heat} B$$

(c) How can you synthesize the following:

(ii)
$$N=N$$
—OH from benzene O_2N